Solve:

$$
\begin{aligned}
& x^{2}+10 x-10=16 x+6 \\
& x^{2}+10 x-16 x-10-6=0 \\
& x^{2}-6 x-16=0 \\
& (x+2)(x-8)=0 \quad x+2=0 \\
& x=-2 \\
& x=8
\end{aligned}
$$

Investigation 3.8 on Geometer's Sketchpad

Angle Bisector Concurrency Conjecture: The three angle bisectors of a triangle meet at a point (are concurrent).

Incenter: the point at which 3 angle bisectors of a triangle intersect.
Incenter Conjecture: the incenter is equidistant from the sides of a triangle
Possible locations of Incenter:

Perpendicular Bisector Concurrency Conjecture: The three perpendicular bisectors of a triangle are concurrent.

Circumcenter: the point at which 3 perpendicular bisectors of a triangle meet
Circumcenter Conjecture: the circumcenter is equidistant from the vertices of a triangle

Possible locations of circumcenter:

Altitude Concurrency Conjecture: the three altitudes of a triangle Orthocenter:

Possible locations of orthocenter:

Investigation 3.9 on Geometer's Sketchpad

Median Concurrency Conjecture: The three medians of a triangle are concurrent.
Centroid: The point of concurrency of the medians of a triangle
Centroid Conjecture: The centroid of a triangle divides each median into two parts so that the distance from the centroid to the vertex is twice the distance from the centroid to the midpoint on the opposite side.

Homework:

-Draw 4 acute triangles. In one triangle construct a circumcenter. In the second one, construct an incenter. In the third one, construct an orthocenter. In the last one, construct a centroid

September 25, 2019

